The effect of electrospray solvent composition on desorption electrospray ionisation (DESI) efficiency and spatial resolution.
نویسندگان
چکیده
In desorption electrospray ionisation (DESI) the interaction between the electrospray and the surface is key to two important analytical parameters, the spatial resolution and the sensitivity. We evaluate the effect of the electrospray solvent type, organic solvent fraction with water, analyte solubility and substrate wettability on DESI erosion diameter and material transferral into useful ion signal. To do this five amino acids, glycine, alanine, valine, leucine and phenylalanine are prepared as thin films on three substrates, UV/ozone treated glass, glass and polytetrafluoroethylene (PTFE). Four different solvents, acetonitrile (ACN), methanol (MeOH), ethanol (EtOH) and propan-2-ol (IPA), are used with organic solvent fractions with water varying from 0.1 to 1. These model systems allow the solubility or wettability to be kept constant as other parameters are varied. Additionally, comparison with electrospray ionisation (ESI) allows effects of ionisation efficiency to be determined. It is shown that the DESI efficiency is linearly dependent on the solubility (for these materials at least) and for analytes with solubilities below 1.5 g kg(-1), additional strategies may be required for DESI to be effective. We show that the DESI erosion diameter improves linearly with organic solvent fraction, with an organic solvent fraction of 0.9 instead of 0.5 leading to a 2 fold improvement. Furthermore, this leads to a 35 fold increase in DESI efficiency, defined as the molecular ion yield per unit area. It is shown that these improvements correlate with smaller droplet sizes rather than surface wetting or ionisation.
منابع مشابه
Use of imaging multivariate analysis to improve biochemical and anatomical discrimination in desorption electrospray ionisation mass spectrometry imaging.
Desorption electrospray ionisation (DESI) mass spectrometry images usually contain a large amount of information that can be difficult to interpret in an objective manner. We explore the use of imaging multivariate analysis (MVA) on DESI images of protein spots and rat brain sections to automatically assign peaks and improve discrimination of spatially important features. DESI parameters were o...
متن کاملImaging the Unimaginable: Desorption Electrospray Ionization - Imaging Mass Spectrometry (DESI-IMS) in Natural Product Research.
Imaging mass spectrometry (IMS) has recently established itself in the field of "spatial metabolomics." Merging the sensitivity and fast screening of high-throughput mass spectrometry with spatial and temporal chemical information, IMS visualizes the production, location, and distribution of metabolites in intact biological models. Since metabolite profiling and morphological features are combi...
متن کاملMolecular characterization of organic aerosols using nanospray-desorption/electrospray ionization-mass spectrometry.
Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry (HR-MS) is a promising approach for the detailed, molecular-level chemical characterization of atmospheric organic aerosols (OA) collected in laboratory and field experiments. The nano-DESI technique possesses distinct advantages of technical simplicity, enhanced sensitivity, and signal stab...
متن کاملHigh-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols.
Characterization of the chemical composition and chemical transformations of secondary organic aerosol (SOA) is both a major challenge and the area of greatest uncertainty in current aerosol research. This study presents the first application of desorption electrospray ionization combined with high-resolution mass spectrometry (DESI-MS) for detailed chemical characterization and studies of chem...
متن کاملNonresonant Femtosecond Laser Vaporization with Electrospray Postionization for <italic>ex vivo</italic> Plant Tissue Typing Using Compressive Linear Classification
T detection and identification of molecules within complex biological matrixes (i.e., plant tissue) requires homogenization, filtration, and liquid extraction of the sample to prepare for analysis using techniques such as gas chromatography/mass spectrometry (GC/MS), liquid chromatography-mass spectrometry (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS), and LC-NMR. Direct analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 135 4 شماره
صفحات -
تاریخ انتشار 2010